JOURNAL OF APPROXIMATION THEORY 44, 384-390 (1985)

Miscellaneous Sharp Inequalities and
Korovkin-Type Convergence Theorems Involving
Sequences of Probability Measures*

GEORGE A. ANASTASSIOU

Department of Mathematics, University of Rhode Island,
Kingston, Rhode Island 02881-0816, U.S.A.

Communicated by Oved Shisha
Received June 14, 1984

We generalize a theorem due to P. P. Korovkin (see [1]) to sequences of
arbitrary probability measures on [0, 7]. Korovkin’s result is concerned
with the convergence of certain ratios of the Fourier coefficients of a
sequence of density functions. Earlier, E. L. Stark (see [2]) gave a different
generalization of this Korovkin theorem.

Analogous characterizations are given for the same type of ratios of the
hyperbolic coefficients (respectively, the Laplace transforms) of a sequence
of probability measures on R (respectively, on R*). In the course of the
proofs we establish various inequalities, on subsets of R, leading to several
sharp estimates. A number of related applications are given.

The following is the basis for the next convergence results.

LEMMA 1. For k, [=2, k, leN there exists a positive constant C(k, ) =
[k2(k*— 1)1/[ (P —1)] such that

[k*(1 —cos t)— (1 —cos kt)]
< Clk, D[P(1 —cos t)— (1 —cos It)], alt t e [0, 7]. (1.1)

Proof. Since |sin nt| <nlsin ¢|, ne N, we have that for z€ (0, 7]

sin?(nt/2)

n*(1 —cos t) — (1 —cos nt)=<n2— sin2(22)

)(1 —cos t)=20.

* This paper is part of the author’s doctoral dissertation written under the supervision of
Professor J. H. B. Kemperman at the University of Rochester, Rochester, N.Y.
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The function

_k*(1~cos 1)— (1 —cos ki)
"~ PP(1~—cos t)— (1 —cos lt)

o(1)

on [0, n] satisfies

k2(k2—1)

EE=1)

lim ¢(t)=
t—0
so that ¢(¢) is strictly positive and continuous, therefore bounded. |

Remark. We conjecture that
Clk, )=k*kK*—1)I"2(>-1)"" if 2<i<k.
It is correct for k< 5 and the corresponding inequality is sharp.

DEFINITION 2. Let u be a probability measure on [0, n]. Its
Fourier—Stieltjes coefficients are defined as

P = Lﬂ cosktu(dr)  (k=0,1,2,.). 2.1)

If py,=1, then u=24,.

LeMMA 3. Let p be a probability measure on [0, n] with Fourier—Stielt-
Jjes coefficients p,, keZ* and p, # 1.

Then
2 1 —p, 5 1—p,
k= —=)|<SClk, D) - ———}1, (3.1)
t—p, 1-p,
where k, [=2, k, le N,

Proof. Integrate (1.1) relative to u and divide both sides by (1 —p,). §

THEOREM 4. Let leN, 122 If {u,},cn is a sequence of probability
measures on [0, ] with Fourier—Stieltjes coefficients p,, such that p,,# 1
and limn—~ © ((1 —pln)/(l _pln)) = 12’ then limn—* ) ((1 —pkn)/(l —pln)) = k2
forall k=2, keN.

Proof. Use (3.1). |

Remark 5. In the sequel k, IeN and k, /=2. Let g(s) be the charac-
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teristic function (Fourier transform) of a probability measure p on [0, n].
We have that

Re(l — g(s)) = fo" (1—cos st) u(dt), seR

Then by applying (1.1) we get
[£*(1 —Reg(1))— (1 — Reg(k))1< Clk, )[2(1 — Reg(1)) — (1 ~ Reg(/))].

As an illustration, let g(s)=|f(s)|?>, where f is a characteristic function.
Then also g is a characteristic function. It follows that

KA1 — ()P = (1= f(R)I1)T< Clk, DI = [ ADIP) ~ (1= [ADI)].

Consequently, if a sequence {f,}, ., of characteristic functions with
[ f.(1)] < 1 satisfies

1— 2
lim (———(—j&>=k2 for one keN, k=2

=[£I

n—

then for all such &,
Now we proceed to a similar type of result.

LEMMA 6. Let k>1>1, Bk, )=~ 1)k *(k?—1)"". Then

[(Cos hlt — 1) — I*(Cos ht — 1] < B(k, [)[(Cos hkt — 1) — k*(Cos ht — 1)]

(6.1)
for all te R.
Here the constant B(k, [) cannot be improved, i.e., (6.1) is sharp.
Proof. Easy, namely, by writing (6.1) as

Sy S
72 < B(k, ! — (k¥ = k).
Gy S B D) Y o (k=)

Mg

i

!

The last assertion follows by
A,(t)=[(Cos hyt — 1) —y*(Cos ht — 1)1 20, p>1
and

lim (4/4,)=B(k. ]). 1
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DeriNITION 7. Let {g,}, ., be a sequence of probability measures on R
such that the following integrals exist:

Fren= fR Cos hktu,(dt) (ke R). (7.1)

We shall call the numbers p, ,, hyperbolic coefficients of the measure p,,.

Now we have:

THEOREM 8. Let {u,},.n be a sequence of probability measures on R
with p, ,< o0 and p,,# 1. Let k> 1 and suppose that

P, — 1
lim 2ke = g2
n—»oop]_"'—
then
. p n—l
lim g"——=12 for all 1 < I<k.
Lnd SN S W

Proof. Immediate from an integration of (6.1) with respect to y,. |

The next result is a characterization of the convexity of functions and
leads to some applications as it is Proposition 11.

LEMMA 9. Iff: (0, o)~ R then h(x)=f(x)/x is convex iff o(k)=
(k*f(x)— flkx) /( k) is non-increasing in k>1, for each x>0.
Equivalently if y(k)= (kf(x)— flkx))/(k* — k) is non-increasing in k > 1, for
each x> 0.

Proof. Let us first assume that / is convex. Consider 1 < A < k. We have

, k—4 A—1 k—24 A-1
Ax—(k_1>x+(k_l>kx with k—_—T'f'F__I:],

where both (k— 4)/(k—1), (A—1)/(k—1)>0. Since & is convex, one has

k—2 A—1

Substituting s(x) = f(x)/x one obtains precisely ¢(4) > @(k). Next, assume
that ¢ is non-increasing for each x> 0. This is equivalent to (9.1). Now
suppose 0 < x, < x, and let a = x,/x, > 1. Applying (9.1) with A =(1+a)/2,
k=ua, and x = x, one has
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(2572)=1((57))

(U ) (UEDDL)

oo—1 -1

1 1
=§h(xl)+§h(-x2)-
Therefore / is convex.

Next we prove that ¢(k) being non-increasing in k > 1 for each x>0 is
equivalent to (k) being non-increasing. In other words, we want to show
that for 1 <A<k

[Af(x) ~ fAx)] [k (x)— flkx)]

(A2—2) (k*—k) >0

is equivalent to

[A/(x)—f(ax)]  [kf(x)—flkx)]

- "-n Y

In fact, the difference between the two left-hand sides equals

(= 2) flx) (K*=k)f(x)
(22=7) (kT —k)

=0. §

Remark 10. Let f: (0, o) — R such that f(x)/x is convex. Then by
Lemma 9 one has for 1 <4<k, all x>0, the two equivalent inequalities

k?—k
(kK*f(x)— flkx)) < </~tz —/1) (Af(x)— f(Ax)) (10.1)
and
kK*—k .
(Kf (x) = flkx)) < ()——_—J (4 () = i) (102)

Quantities such as [Af(x)}— f(ix)] can be regarded as a measure of
linearity for f.

PROPOSITION 11. For k>A>1 and x>0 obtain the following two
equivalent sharp inequalities:

k*—k ,
) (1= e )= (1=e7 ) (L)

k%l—e‘ﬂ—{l—e‘“)<<
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and

2" Pl
k(1—e *)—(1 —e"‘")<(];2—];) (Al—e )~ (1—e"")). (11.2)

Proof. Note that the function f(x)=1-e"%, x€ (0, + ), satisfies

M:Jl e % d
0

X

showing that f(x)/x is convex. By Lemma 9 we have (10.1) and (10.2).
These are precisely (11.1) and (11.2). The sharpness follows from

(e )—(1~e ") k(l—e ") —(1—e )
I i —e (e ™ e (e

k> —k
=(m) .

Some applications of the last proposition are Theorem 14 and
Proposition 16 following.

DerINITION 12. Let u be a probability measure on R*. For >0 its
Laplace transform is defined as

(p(i):_[m e~ u(dr). (12.1)

0

LEMMA 13. Let k> A>1 and let {u,},_n be a sequence of probability
measures on R* with existing Laplace transforms ¢, such that ¢, (1)# 1 all
ne N. Then one has the equivalent inequalities

() -]
)

Proof. Integrate (11,1) and (11.2) relative to u, and divide by
(1—o,(1))>0. 1

THEOREM 14. Let A> 1. Then

and

nliqn:o (%:—%) =A%  (respectively 1)

640/44/4-7
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implies that

lim

n—

1—o,(1)

Proof.  Apply (13.1) (respectively (13.2)). |

) =k? (respectively k) for all k > 4.

DErFINITION 15. The Weierstrass operator is the positive linear operator
defined by

(an)(t)z\/grC flx)e "'~ dx, allneN,

where fe Cgx(R).
One has W, f % fas n— .

PROPOSITION 16.  Let f'e Cy(R) such that [ |f(x)|" dx=C,€(0, x0);
all ne N. Consider k= A with k, AeN.

If
, T (L1
1_\/;" )\<Cn ,t) 2

lim =1 (respectively )

n—x 1—\/;W1<‘_£|_’,>

- ()
, X C, ,
lim TG =k
o o 1_\/;{ W, (_E’_’ t)

Proof. Apply (11.1) (respectively (11.2)) with x replaced by (z— x)?,
where ¢ is fixed. Afterwards multiply by | 1" and integrate over R. ||

then

(respectively k).
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